Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Zool ; 65(4): 375-384, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31413710

RESUMEN

Evolution of complex physiological adaptations could be driven by natural selection acting on behavioral traits. Consequently, animal personality traits and their correlation with physiological traits have become an engaging research area. Here, we applied a unique experimental evolution model-lines of bank voles selected for (A) high exercise-induced aerobic metabolism, (H) ability to cope with low-quality herbivorous diet, and (P) intensity of predatory behavior, that is, traits shaping evolutionary path and diversity of mammals-and asked how the selection affected the voles' personality traits, assessed in an open field test. The A- and P-line voles were more active, whereas the H-line voles were less active, compared those from unselected control lines (C). H-line voles moved slower but on more meandering trajectories, which indicated a more thorough exploration, whereas the A- and P-line voles moved faster and on straighter trajectories. A-line voles showed also an increased escape propensity, whereas P-line voles tended to be bolder. The remarkable correlated responses to the selection indicate a common genetic underlying mechanism of behavioral and physiological traits, and support the paradigm of evolutionary physiology built around the concept of correlated evolution of behavior and physiology.

2.
Physiol Biochem Zool ; 88(6): 668-79, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26658414

RESUMEN

Endothermy, high basal metabolic rates (BMRs), and high locomotor-related metabolism were important steps in the evolution of mammals. It has been proposed that the composition of membrane phospholipid fatty acids plays an important role in energy metabolism and exercise muscle physiology. In particular, the membrane pacemaker theory of metabolism suggests that an increase in cell membrane fatty acid unsaturation would result in an increase in BMR. We aimed to determine whether membrane phospholipid fatty acid composition of heart, liver, and gastrocnemius muscles differed between lines of bank voles selected for high swim-induced aerobic metabolism-which also evolved an increased BMR-and unselected control lines. Proportions of fatty acids significantly differed among the organs: liver was the least unsaturated, whereas the gastrocnemius muscles were most unsaturated. However, fatty acid proportions of the heart and liver did not differ significantly between selected and control lines. In gastrocnemius muscles, significant differences between selection directions were found: compared to control lines, membranes of selected voles were richer in saturated C18:0 and unsaturated C18:2n-6 and C18:3n-3, whereas the pattern was reversed for saturated C16:0 and unsaturated C20:4n-6. Neither unsaturation index nor other combined indexes of fatty acid proportions differed between lines. Thus, our results do not support the membrane pacemaker hypothesis. However, the differences between selected and control lines in gastrocnemius muscles reflect chain lengths rather than number of double bonds and are probably related to differences in locomotor activity per se rather than to differences in the basal or routine metabolic rate.


Asunto(s)
Arvicolinae/metabolismo , Membrana Celular/metabolismo , Metabolismo Energético , Ácidos Grasos/metabolismo , Fosfolípidos/metabolismo , Animales , Arvicolinae/genética , Metabolismo Basal , Hígado/metabolismo , Músculo Esquelético/metabolismo , Miocardio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...